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Abstract. The anisotropic susceptibility of the layered antifemomagnel NiPS3(TN = 155 K) 
has been measured between 45 K and 650 K. The system may be described by the effective 
spin Hamiltonian H = D.7,: - JijSi . S,, with the quadratic singleion anisotropy terms 
introducing anisotropy in an otherwise isotropic situation. The exchange I and single-ion 
anisotropy parameter D were determined from an analysis of the anisompic susceptibility data 
for two different models: (i) the Oguchi model, in which a pair of spins chosen at random is 
treated exactly while its interactions with the rest of the crystal are approximated by a mean field 
and (U) the wrrelated effective field (Cw) approximation developed by Lines, which reduces the 
many-body problem to a single-particle, nowinteracting ensemble form, by the introduction of 
static temperahwe-dependent correlation parameten, which are evduated by forcing consistency 
with the Auciualion-dissipation theorem. It is found that the CEF approximation is superior to 
the Ognchi model in describing the susceptibiliry of NIPS,. The exchange and crystal field 
parameters for the CEF approximation are J / k  = -58.0 K; D l k  = 16.1 K; gll = 2.05 and 
82 =2.13. 

1. Intmduction 

There has been continuing interest in low-dimensional magnetic system, because of the 
variety of phenomena that they exhibit [l, 21. Among the known low-dimensional system, 
the layered transition metal chalcogenophosphates, MPX, (M = Mn, Fe, Ni and X = S, 
Se) are rather unique; they represent one of the few known layered systems in which 
both magnetic and crystallographic lattices are two dimensional ( 2 ~ ) .  Unlike most other 
2D magnetic systems, wherein magnetic layers are separated by diamagnetic layers, in the 
transition metal thiophosphates, the MPX3 layers are separated by a van der Waals gap. 
The presence of the gap rules out super-exchange pathways and since the inter-layer metal- 
metal distance is of the order of - 6.5 .&, direct exchange too would be negligible; the 
chalcogenophosphates are hence nearly ‘perfect’ ZD magnetic systems, with the metal ions 
forming a honeycomb arrangement within the layer. An interesting consequence of the 
van der Waals gap is that it is possible to intercalate a wide variety of guest molecules 
and ions as in the case of transition metal dichalcogenides. Subsequent to intercalation 
there are considerable changes in magnetic behaviour [3-6]. An obvious prerequisite to 
understanding these changes is a quantitative evaluation of the exchange and crystal field 
parameters of the host. In this paper we have attempted to do this for NiPS3, from an 
analysis of the susceptibility data. 

NiPS3 like the other transition metal thiophosphates orders antiferromagnetically at low 
temperatures [7,8]. These materials are ionic insulators, the transition metal d electrons 
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localized and atomic like and the d electron manifold adequately described in the weak- 
field limit of crystal field theory [9]. 

An interesting feature of magnetism in the transition metal thiophosphatm is that the 
anisotropy in the magnetism is strongly dependent on the metal ion. The anisotropy in the 
transition metal thiophosphates has been shown to originate from crystal field effects [SI, 
as a consequence of the zero-field splitting of the e+ ion d levels [lo], due to the trigonal 
distortion of the MS6 octahedra. Thus in the case of NiPS3, the 3A2g ground state of an 
octahedrally coordinated Ni2+ is split under the combined action of the trigonal distortion 
and spin-orbit coupling, to give a doublet and a singlet separated by D. 
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The effective spin Hamiltonian which describes the system is 

3t = - J S ~ .  S, + DS: 
ij i 

with D introducing anisotropy in an otherwise isotropic situation. 
In this paper we report an analysis of the anisotropic susceptibility of NiPS3. In 

low-dimensional systems such as NPS3 it is well known that spin correlations persist at 
temperatures much higher than TN [ I ]  and consequently the simple mean field approximation 
(MFA), which completely ignores these correlations, is likely to be a poor approach. At the 
same time the zero-field splitting of the Ni2+ d levels, which is of the order of k T ,  makes 
it difficult to apply more refined theories [ l l ] .  In analysing the susceptibility, we have 
used two different models which try and incorporate an element of spin correlation,while 
at the same time retaining the simplicity of the molecular field approximation. The two 
are (i) the Oguchi molecular field [12,13] in which a pair of spins chosen at random from 
the crystal is treated exactly while the coupling of this pair with the rest of the spins 
in the crystal is approximated by an effective field and (ii) the correlated effective field 
(CEF) developed by Lines [ 111, in which the effective field felt by an ion is approximated 
by the sum of the ensemble average of the rest of the spins and a term proportional to 
the instantaneous deviation of the spin from its own ensemble value. The temperature- 
dependent proportionality constant appearing in the latter term, which is a measure of the 
static correlations, is determined by forcing the model to be consistent with the fluctuation- 
dissipation theorem. 

The susceptibility for an S = 1 ion with uniaxial quadratic anisotropy has been derived 
for the above two models. The zero-field splitting parameter D and the exchange integral 
J were evaluated by fitting the theoretical expression to the experimental susceptibilities. 

In 2D magnetic systems wherein exchange is isotropic or has an XY anisotropy, 
transitions to long-range order arise as a consequence of weak 3D inter-layer coupling 
(e.g. dipolar coupling). In such situations, it is unlikely that models which are used to 
describe the ZD high-temperature susceptibility would be able to predict the correct transition 
temperatures. 

2. Experimental details 

NiPS3 was synthesized from the comesponding elements and single crystals grown by 
chemical vapour transport using excess sulphur as the transporting agent [3]. 

Magnetic susceptibility measurements were made on a Faraday magnetic balance. 
Temperatures in the range 45-300 K were obtained using a closed cycle cryostat (Air 
Products). Measurements in the temperature range 300650 K were performed using a high- 
temperature furnace assembly. The susceptometer was calibrated using Hg [Co(NCS)a] as 
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a standard. The crystals were suspended from the balance by an arrangement similar to that 
reported in [14]. The arrangement allowed the measurements of susceptibilities for different 
orientations of the crystal with respect to the field. The susceptibilities reported are for two 
directions-the field parallel and perpendicular to the trigonal axis. The trigonal axis in 
NiPS3 is perpendicular to the layers. 

The susceptibilities were corrected for the diamagnetic as well as the temperature- 
independent paramagnetic (TIP) contributions. The TIP contributions for the 3A28 ground 
state of NiZt is given by 8N&/lO Dq [15]. Optical absorption studies 191 had reported a 
10 Dq value of 8900 cm-' for NiPS3. The TIP contribution is thus 0.235 x lo-' emu mol-'. 
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3. Results and discussion 

The temperature variation of the susceptibility of NiPS3 for the two directions-parallel 
and perpendicular to the trigonal axi-is shown in figure 1. The data are identical to the 
results obtained from measurements made on a vibrating sample magnetometer [8]. In the 
paramagnetic phase (T > 155 9) XI > xii, whereas below TN = 155 Ki t  may be seen that 
the magnetization axis of the antiferromagnetic state is perpendicular to the trigonal axis. 

NIPS, 

/- 
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The anisotropy in the susceptibilities is a consequence of the zero-field splitting of the 
3A2, ground state of NiZ+ by the trigonal distortion. The fact that X I  z X I I  directly implies a 
splitting of the ground-state triplet into a lower singlet and an upper doublet (figure 2). The 
isolated ion may be represented by the Hamiltonian Z = For NiPS3, D is positive. 
The anisotropy is weak since the splitting of the 3A2, state by the trigonal field is an indirect 
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effect, arising from the spin-xbit coupling of the lAZg state with the higher-lying 3Tzg state, 
whose degeneracy is lifted by the trigonal distortion. The exchange parameter J and the 
zero-field splitting D were estimated over the entire temperature range of the experimental 
susceptibility, n-ithin the Oguchi model as well as the correlated effective field theory of 
Lines. 

N Chandrasekharan and S Vasudevan 

A 

oh D3d 
Figure 2. The splitting of the rs 0 A z 6  
and 3T26) far a d8 ion under the inRuence 
of a trigonal field. A is the crystaf-field 
splitting and D is the zem-field splitting. 

H A  H. 

Figure 3. The Zeeman splitting for an Ni2+ dimer in an external 
field applied pamllel and perpendicular lo lhe trigonal axis. 7he D 
and J values arc hose which give the besl fit Lo lhe Oguchi model 
(Dlk  = 16.3 K, Ilk = -66.9 K). The labelling of the states is as 
referred to in lhe appendix. 

3.1. Oguchi model 

This is one of the simpler models which incorporates an element of spin correlations into 
the MFA. Interactions between neighbouring magnetic ions are treated exactly while the 
interactions of the pair with the rest of the lattice are approximated by a molecular field. 
The magnetic Hamiltonian for such a pair is 

n = D[s;, + ski - ~ J [ s ; s ;  + (s:s; + S;S:)I - n&- 
'Haemac = gllBHLk(S; + S;) - $gLBH&,(S: + S: + S;  + S;). (2)  

In equation (2) z ,  11, coincides with the trigonal axis and 

H,rr = H' + Hop 

where Hog" (the field is due to all the other magnetic ions) is proportional to the 
magnetization 
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As the pair was chosen at random, its average magnetic moment per atom must be the 
same as that of any other pair and consequently the same as that of the entire crystal. We 
require, for consistency, that the magnetization along any axis h be 

The derivation of (Sll)dim and ( S L ) ~ ~ ~ ~  for an Ni2+ pair (SI = S2 = 1) with single-ion 
quadratic anisotropy terms is straightforward. The energies of the dimer (see the appendix) 
in the field were obtained by treating the in equation (2) as a perturbation. The 
energy diagram for an S = 1 dimer in an external field is shown in figure 3. 

The average spin moments (&)dimer are calculated from the pair partition function, 
2, = Ci according to the relation 

The expressions for (Sil) and (SL) are given in the appendiw. The magnetization along 
the different axes may be obtained by substitution of (&)dimer in equation (4) and zero- 
field directional susceptibilities, M A I H A , ~ ,  may be obtained by rearranging the terms. The 
expressions for the susceptibilities are 

xogun = - = - 
4e4J-DlkT + e4J/kT + 1 

G ( J ,  D ,  T) - 2(z - 1)(J/kT)(4e4'-DIkT +e4J/kT + I ) ]  (5 )  

M L  Ng:P2F(J, D ,  T )  
xosui = - = Ho G ( J ,  D ,  T) - 2(z - l ) J F ( J ,  D ,  T) 
G ( J ,  D, T) = 2e4J-D/kT + 2e 4JIkT + 2 + eJ+y/kT + eJ-y/kT + ,-D/kT 

1. 3c? (e4J/kTeJ-y/kT +- 
~ J + Y  

The parameters C and y have been defined in the appendix. The J, D,g l  and 
g l  parameters were determined for the Oguchi model by fitting the expressions to the 
experimental data using the method of least squares. The best fits, shown in figure 1 as the 
full lines, are for J / k  = -66.9 K, D / k  = 16.3 K, 811 = 2.06 and 81 = 2.14, In the fitting 
program J ,  D and gll were floated. g l  is related to 811 by the relation gL = 811 + ZD/l A I 
[16]. The value of I A I=- 280 cm-I was taken from [9]. 

For comparison, the MFA suceptibilities are shown as the broken lines in figure 1. The 
expression for the MFA susceptibility is 

Xho XAMFA = 
1 - 2ZJx,0/Ng:/32 

where x: are the isolated ion susceptibilities [lo] and are 

and 

(7) 

It may be seen from figure 1 that, as expected, the Oguchi model improves upon the 
MFA. 
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3.2. Correlated effective field 

The CEF formalism proposed by Lines [ 1 I] is ideally suited for systems wherein the magnetic 
Hamiltonian can be written in the form 

N Chandrasekharan and S Vasudevan 

= XCF + %xchge .  (10) 

‘Hcp is the Hamiltonian in the absence of exchange. 
This has been employed with reasonable success in analysing the susceptibility of 

the one-dimensional RbFeBq 1171 and RbFeCls [18] where, as in the present case, 
XCF = xi In the case of the isotropic Heisenberg lattice where D = 0 and the orbital 
angular momentum is completely quenched, the results of the CEF model tally exactly with 
the results of the random phase Green function approximation [ l l ] .  The CEF model attempts 
to reduce the many-body problem to a single-body, non-interacting ensemble form, by the 
introduction of static temperature-dependent spin correlation parameters CY’ (h =I1 or I), 
which are evaluated by forcing consistency with the fiuctuation4issipation theorem. 

In this model, the correlated effective field for the ith spin, Si, is obtained by replacing 
each Sj in equation (1) by the sum of two contributions, one its ensemble average (S,), the 
other a term proportional to the instantaneous deviation of Si from its own averaged value 
(Si) i.e. 

Sj” + (s;) +&$ - (Si”)). ( 1 1 )  

Corresponding to this replacement, the effective Hamiltonian for the ith spin in the 
high-temperature paramagnetic phase is 

In the presence of an applied field Ho in the direction h 

Xi(em = ~ P ( e m - g p ~ o ~ ~  +~CJ(;S~((S;)  -CY’($) ) .  (13) 
I* 

The field-dependent ensemble averages are obtained by treating the last two terms in 
equation (13) as a perturbation on @(em. The field-dependent ensemble averages are 

kT(S(q) ’ )x  = HgB(S: : S?)o t ~ [ J ( P ) ~  - w * J ~ ( O ) I ( S ( ~ ) ~ ) , X ( S ; ^  : Si)o (14) 

where S(q )  and J(q) are the Fourier transforms of the corresponding lattice quantities and 
the momentum q belongs to the first Brillouin zone. 

The colon product ensemble average is defined by 

SA, are the matrix elements of the hth component of the ith spin between the nth and 
mth eigenstates, E,, and E,  are the eigen energies of the respective levels and pn is the 
density matrix. The susceptibility defined by x:(q) = N(S(q)’ ) /H may be written as 

kTXi(q)* = g:B*(s: : s:,o + U’(4) (16) 
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where 

From the fluctuation theorem we have E, U ( q )  = 0 [ l l ]  which allows the complete 
determination of the correlation parameters, a*. Once ax is obtained the uniform static 
susceptibility directly follows as 

A -  Ng$4z(S; : S:,' 
" - kT -2zJ(O)(l -a*)(S: : 

where z is the coordination number around the central metal ion. 
For an antiferromagnet (Am) the N k l  temperaturethe temperature at which the 

staggered susceptibility, x (q = q*; q* is the antiferromagnetic ordering vector) diverge- 
may be calculated in the CEF model as the temperature at which the denominator of equation 
(18) goes to zero for q = 4'. Noting that for an AFM J(q ' )  = -J(O) it follows that the 
Nkel temperature, TN, is 

~ T N  = ZzJ(O)(l +a*)($ : $)o. (19) 

The susceptibilities of Nip& were calculated using equation (18), after evaluation of 
the a parameters from equation (17). The equations for ah involve a summation over the 
Brillouin zone. We have used the special 'k' point scheme of Chadi and Cohen [19] for 
obtaining the averages over the Brillouin zone. For Nip& where the Ni2+ ions form a 
honeycomb lattice the 6k point set obtained by Cunningham [ZO] for a ZD hexagonal lattice 
was used. The equations for all and aL obtained from equation (17) are not independent 
and the solutions were obtained numerically. 

Below TN the CEF susceptibilities have to be reformulated to account for the AFM 
ordering [Zl]. For a two-sublattice collinear AFM the CEF susceptibility is given by 

where the a* parameters are obtained from the solution of equation (17) after an appropriate 
change of sign. 

The colon products (Si" : Si")' in equation (15) for Ni2+ were evaluated from the eigen 
values and functions of 'Flea [22]. They are, for D' = D - z J ( d  -a') 

The best fits were obtained by a non-linear least-squares fitting of equation (18) to the 
experimental susceptibility and are shown as solid lines in figure 4. The best fit was for a 
value of D/k = 16.1 K, J / k  = -58 K 811 = 2.05 and g l  = 2.13. 

The calculated 2D susceptibility diverges at 260 K since the denominator in equation 
(18) goes to zero. This temperature. however, has no thermodynamic significance and 
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n 

6 1.8 

1.3 

0.6 
~ 0 

T (K) 

F i y r e  4. The aniso@opic magnetic susceptibilities of Nips, single crystals. parallel ( X I , )  and 
perpendicular (XL) to the trigonal axis, as a function of tempemure The solid lines are the 
fit of the anisotropic susceptibility expressions of equation (18) and equation (20) in the cfs 
approximation for J f k  = -58 K D f k  = 16.1 K, 811 = 2.05 and 61 = 2.13. The broken lines 
are the anisotropic susceptibilities calculated in the Opehi approximation for the same values 
of J ,  D. 611 and 61 as in the CEF approximation. 

should not be compared with the experimental TN, since magnetic ordering in the weakly 
XY anisotropic NiPS3 arises as a consequence of weak inter-layer coupling. Below 260 K 
equation (20) was used to calculate the susceptibility. Since the in-layer symmetry of the 
low-temperature-ordered magnetic lattice is the same as that of the crystallographic lattice 
[3] the same set of 6k points was used for computing the Brillouin zone averages. Inter- 
layer coupling was accounted for by a molecular field. It may be seen from figure 4 that a 
reasonable fit is obtained between 200 K and TN. Below TN the fit is extremely poor and an 
approach using spin waves is likely to be a better approximation, but is beyond the scope of 
the present work. It is interesting to note that the temperature at which the CEF susceptibility 
diverges, 260 K, corresponds to the temperature of the experimental xm. This temperature 
may be interpreted as the temperature at which the in-layer staggered susceptibility is a 
maximum. Although the high-temperature fits in the CEF and Oguchi models (figures 1 and 
4) are comparable, the CEF achieves the same quality of fit for a lower value of J .  This 
may be clearly seen in figure 4, where the broken line is the susceptibility calculated in the 
Oguchi model, using the J ,  D and g values which gave the best fit for the CEF. The CEF 
formalism is superior to the Oguchi model in being able to account for short-range spin 
correlations; however, it too underestimates antiferromagnetic correlations near x-. The 
Oguchi model could in principle be improved, by considering clusters larger than a dimer 
for the evaluation of the effective field; this however is not particularly easy [13]. The 
CEF has the additional advantage of being computationally simple and consequently may be 
easily extended to systems with magnetic Hamiltonians more complicated than the present 
one. 
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4. Conclusions 

The anisotropic susceptibilities of the layered antiferromagnet Nip& (TN = 155 K) have 
been measured between 45 K and 650 K. The susceptibilities show a weak XY anisotropy in 
the high-temperature paramagnetic phase with XI > X I I ,  where X I ,  is the susceptibility when 
the external field is along the trigonal axis (perpendicular to the layer). Below TN xII > XI. 
The system may be described by the effective spin Hamiltonian ‘FI = - Cij JijSi -S j ,  
with the quadratic single-ion anisotropy terms introducing anisotropy in an otherwise 
isotropic situation. The exchange J and single-ion anisotropy parameter D were determined 
from an analysis of anisotropic susceptibility data for two different models: (i) the Oguchi 
model in which a pair of spins chosen at random is treated exactly while their interactions 
with the rest of the crystal are approximated by a mean field and (ii) the correlated effective 
field (CEF) approximation developed by Lines which reduces the many-body problem to a 
single-particle, non-interacting ensemble form, by introducing static temperaturedependent 
correlation parameters, which are evaluated by forcing consistency with the fluctuation- 
dissipation theorem. Analytical expressions of the anisotropic susceptibilities have been 
derived for the Oguchi model. It is found that the CEF approximation is superior to the 
Oguchi model in being able to account for short-range antiferromagnetic correlation and 
hence gives a better description of the susceptibility in NiPS,. The exchange and crystal 
field parameters for the CEF approximation are J f k  = -58.0 K, D f k = 16.1 K; go = 2.05 
and g l  = 2.13. 

Appendix. (SA) for an Nizt dimer with quadratic single-ion anisotropy terms 

The energies and wavefunctions of the NiZ+ dimer in the absence of a field (Hl = H, = 0) 
in equation (2) are given in table Al.  

(&)dim were calculated by treating the Zeeman terms in equation (2) as a perturbation. 
When the field is along the z direction (4 # 0. Hl = 0) the eigen values and eigen 
functions are obtained from first-order perturbation theory. They are listed in table A2. 

When the field is along the x or y direction (HI # 0, Hll = 0) the first-order perturbation 
energies are zero since S, does not commute with the Hamiltonian and the energies are 
evaluated using second-order non-degenerate perturbation theory. The energies are tabulated 
in table A3. 



4518 N Chandrasekharan and S Vasudevan 

Table AZ. 

Et =-6J+2D-2gllflHen 
E2 = -63 + 2 0  + 2gllBHcn 
E, -63 + D -gyBHa 
Eo = -6J + D i glj3Ha 
E5 = -3Jf D - y 
E6 = -25 f D - gil B H a  
E, = -25 f Digt lpHdf 
Eg = -2J f 2D 
EP = -31 f D + Y 

Table A3. 

El = E2=--6J+2D+g:B2HitD-' 

E3 = E4 = -6J t D - g:,BzH& (D-] + - 

E5 = -33 D - y + 

3c: +-) 3c2 
6 J - 2 y  6J+2y 

3giBzH&C: 
3 1  - Y 

En = E7 = -2J t D - n:,@H$D-' 

The ensemble average of the spin moment of the dimer (Si)amcr is given by 

kT SInZi 
(&)&mer = -- 

gib SH 

where E are the energies of the dimer in the applied field. For a small value of He* 
second-order terms in H may be dropped and the expression for (S&jmer is 

3c: (e4JjkT - eJ-y/kT). +- 
3 J + y  
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